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ABSTRACT
With the wide deployment of smart environments and IoT devices,
WiFi sensing has demonstrated its great convenience and contact-
less sensing capabilities in supporting a broad array of applications.
However, designing a ubiquitous WiFi sensing system for hetero-
geneous scenarios in practice is still a big dilemma as the system
performs poorly when the testing data is significantly different
from the training data caused by domain variations. To address
this dilemma, existing studies involve extra efforts to develop new
features or even to retrain the original model under environmen-
tal variations. However, none of them can resolve the dilemma
completely. In this work, we conduct a comprehensive study on
the domain variation problem to make WiFi sensing robust and
accurate in reality. Our definition of domains is comprehensive
and includes environments, surrounding settings, user differences,
user’s facing directions, user’s positions relative to WiFi sensors,
and user participating time frames. Our innovation is to achieve
reliable WiFi sensing across all the domains based on the confor-
mal prediction framework. Our approach quantifies the conformity
(i.e., similarity) between the testing WiFi samples and the training
samples, then labels the testing samples with the most probable
class(es). We develop a novel cross-domain transformal prediction
scheme based on the multivariate kernel density estimation to ef-
fectively assess and learn the conformity of each domain in the
training data. To meet various application-specific requirements,
we further develop two approaches to fuse the knowledge of con-
formity derived from the training domains to perform predictions.
Extensive experiments with both self-collected and public datasets
show that our framework can improve prediction accuracies from
30% to 74% improvements in three most representative WiFi-based
applications across six types of domain variations.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).
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1 INTRODUCTION
Mobile sensing is the core enabler of the wider deployment of smart
environments and IoT devices. Among various sensingmodalities in
mobile devices, wireless signals, and the especially pervasive WiFi
signals, have demonstrated their great convenience and sensing
capability in practice due to their widely deployed infrastructure
and non-intrusive characteristics. Existing studies have designed
many WiFi sensing systems for various applications, including ac-
tivity/gesture recognition [21, 35], vital sign monitoring [16], and
user identification [27, 31], etc. While these systems can provide
promising results under specific conditions, extending such WiFi
sensing systems as ubiquitous solutions for heterogeneous practi-
cal scenarios, such as different environments and devices, various
participants and participating time frames, etc., is still a challenging
and difficult task, when there are differences, known as domain
variations, between training and testing samples. This challenge is
known as the domain variation problem, which is one of the most
critical research problems in WiFi sensing.

It is common that the sameWiFi sensing system will be deployed
across different environments (e.g., different rooms and buildings).
Even when the WiFi sensing system only needs to operate in a
single environment, it still suffers from many problems caused by
domain variations such as furniture movements, users’ facing di-
rections and positions changes. Note that it is hard for a user to
keep the same facing direction and position in every scenario. Such
minute differences are also considered as domain variations in real-
ity. Some domain variation problems in WiFi sensing systems have
been studied. Features with low correlations to the environments
have been developed to achieve high gesture recognition accuracy
across different rooms, facing directions, and positions [35]. EI [11]
is an activity recognition framework that can work across different
environments using domain adaptation. Data augmentation meth-
ods have been proposed to generate synthetic or virtual training
samples [4] or to reuse knowledge [8] from different tasks to im-
prove the generalization ability of a WiFi-based activity recognition
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across devices and subjects. Adversarial learning technique has also
been used to remove unpredictable environment-specific factors to
perform user authentication across different furniture placements
and users’ positions in a room [19]. Overall, these studies only focus
on a limited number of domains and still have dilemma when facing
various domains in reality. They also require extra effort to develop
new features or retrain the model when environment changes. It
remains difficult to widely deploy such systems.

In contrast to the existing work, we conduct a comprehensive
study on the domain variation problem and design a robust and
accurate WiFi sensing framework under heterogeneous domain
variations. Specifically, we define the following domain variation
categories that most WiFi sensing systems are subject to in real-
ity. Environment: WiFi sensing systems usually exploit pervasive
WiFi infrastructures in indoor environments, when deploying these
systems in reality, the same WiFi sensing system is likely to be
used across different environments. These environments have a
variety of physical characteristics, such as room sizes, layouts, and
building structures. Setting: Furthermore, the settings within the
same indoor environment are subject to change from time to time.
For instance, different placements of furniture and sensing devices
may cause different patterns in reflections and dispersion of WiFi
signals. User: Most of the WiFi sensing applications involve human
subjects. Therefore, variations due to human subjects with different
different physiological and behavioral traits are common in WiFi
sensing applications. User’s Facing Direction: In reality, user’s facing
directions are changing dynamically in WiFi sensing applications.
Although minor in scale, such domain variations are especially
challenging because they are unpredictable and cannot be well
addressed without extensive retraining efforts [5]. User’s Position:
A user can be at different locations or proximate positions from
the trained location/position in a room, resulting in complicated
domain variations in the relative positions to WiFi sensing devices.
Timelines: Dynamic varying temperatures, humidity, and hardware
states may also render wireless channel conditions unstable across
different timelines [9, 17, 18]. Overall, the domain variations can re-
sult in changing multi-path effects and bringing noises into wireless
signals. They will also lead to fluctuating patterns in fine-grained
WiFi signal measurements (e.g., channel state information (CSI)),
thereby causing signal profile mismatches and degraded sensing
performance in various WiFi sensing applications. In this study,
we focus on three most critical WiFi sensing applications: user
identification, activity recognition, and gesture recognition, across
different environments or within the same environment. These
applications are the essential components of a broad spectrum of
mobile applications in practice, including mobile healthcare, smart
home, and Internet of Things.

To address the domain variation problem, we develop a low-
effort framework to achieve reliable and accurate WiFi sensing
across multiple domains in practical deployment. Our system re-
sorts to conformal prediction [25] to determine the conformity (i.e.,
similarity) between the source data (training data) and target data
for predictions based on a quantification metric derived from the
training data. The basic idea is to leverage WiFi signals from a few
domains (i.g., two or more) to assess the conformity of the testing
WiFi signals, which may be from an unseen domain. Compared to
existing machine-learning-based approaches, conformal prediction

is a non-parametric approach to handling shifts in WiFi signals. It
can achieve classification results without the need for generating
new features or retraining under domain variations.

However, realizing such a practical WiFi sensing framework is
challenging. The success of conformal prediction is built upon an
effective metric to quantify conformity. Existing learning-based
measurement algorithms assume the training and testing data to be
identically and independently distributed (i.i.d.). This assumption
is no longer valid under domain variations. Developing a quantifi-
cation metric resilient to domain variations is necessary to realize
conformal prediction. In addition, different from traditional classi-
fication techniques that output a single class label given an input,
conformal prediction resolves the prediction dilemma in reality
through performing prediction on each class and producing a set
of class labels as output. The prediction accuracy and the size of
the predicted set should be balanced based on applications.

Specifically, we design a scheme based on kernel density estima-
tion (KDE) to assess and learn the conformity across domains in the
training data. Compared to other learning-based algorithms, which
rely on a well-defined mapping relationship between training and
testing data (i.e., i.i.d assumption), our scheme leverages the confor-
mity learned from the training data to quantify domain variations
in the testing inputs. The cross-domain relationships derived from
the training data relieve our framework from the i.i.d assumption
and are statistically more reliable under different domain variations.
To meet the application-specific requirements on the accuracy and
size of the class set, we develop two approaches to fuse the knowl-
edge of conformity derived from training domains, with priorities
on maximizing the accuracy and minimizing the number of classes.
We summarize the contributions of our work as follows:

• We conduct a comprehensive study of the domain variation
problems in various WiFi sensing applications and show
the feasibility of achieving high WiFi sensing performance
across typical domains in real deployment without requiring
extra efforts for collecting new data, generating new features,
or retraining prediction models.

• In contrast to existing studies, we develop a holistic WiFi
sensing framework using conformal prediction that can en-
sure high prediction accuracy when facing different domain
variations in reality. We develop novel kernel density-based
nonconformity measure and cross-domain conformal predic-
tion with two fusion approaches that can more accurately
determine the most possible class(es) of the input data.

• We realize the proposed framework for typical WiFi sensing
applications (i.e., user identification, activity classification,
and gesture recognition) to perform a thorough study on
the effectiveness of our framework with domain variations
of six categories: environments, settings, user, user’s facing
directions, user’s positions, and timelines.

• We conduct comprehensive experimentswith both self-collected
and public WiFi sensing datasets. The results validate that
our conformal prediction-based framework can effectively
mitigate cross-domain errors and improve the prediction ac-
curacies from 30% to 74% in three WiFi sensing applications
with domain variations in six categories.
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Figure 1: Impacts of domain variations to deep-learning-
based user identification with the CSI data collected in three
furniture settings (i.e., setups 1, 2, 3).

2 BACKGROUND AND PRELIMINARY
2.1 Deep-learning-enabled WiFi Sensing
WiFi techniques have been used in a multitude of mobile and IoT
devices, such as voice assistants, smart refrigerators, and laptops,
to connect the devices and exchange data. Specifically, the channel
state information (CSI) of WiFi describes how the wireless signals
propagate over multiple orthogonal frequency division multiplex-
ing (OFDM) subcarriers between a pair of devices. The CSI is cap-
tured during WiFi signal propagation with the combined effects of
scattering, fading, and multi-path. As a result, it contains informa-
tion of human bodies, motions, and surrounding environment (e.g.,
furnitures, walls, etc.) As CSI is readily available on most current
WiFi systems (e.g., 802.11n and its successors), significant research
efforts have been devoted to investigating using CSI for sensing
applications. Among them, activity recognition [30], gesture recog-
nition [2], and user identification [20] are the three most critical
applications. The key idea of WiFi sensing is to extract discrim-
inative features from the CSI measurements in order to capture
characteristics of the involved activities and human subjects. The
features are then fed to deep learning models to train with a set of
target classes. With the strong capabilities of modeling both linear
and non-linear mapping relationships, deep learning models often
significantly outperform traditional machine learning models and
human-craft analytical methods [15].

2.2 Problem Scope
Domain Variations in WiFi Sensing. Despite the promising re-
sults of deep learning, current studies have found that the wireless
sensing approaches are susceptible to domain variations [11, 19].
In the context of WiFi sensing, a domain is defined as an impacting
factor of the signal patterns of CSI. Due to the omnidirectional sig-
nal propagation, the CSI captures substantial information specific
to these impacting factors. Changes in any of them, which we refer
to as domain variations, will result in the data distribution drifts. In
this paper, we aim to explore using statistical assessment metrics to
quantify such data distribution drifts and improve the robustness of
WiFi sensing. Instead of extracting new features and updating the
model’s weights, our approach uses these metrics to leverage inter-
mediate results of the deep learning models (representations) for
the quantification of domain variations. We focus on the following
domain variations in six categories:

Environment. Users may use wireless sensing based applications
(e.g., smart home control, user authentication) across rooms, such
as different rooms of a house or different offices in a company
building. As the multi-path of WiFi is dominated by wall reflections,
the change of room layout will greatly alter the multi-path. Such
changes make the CSI intensities and fluctuation patterns vary
greatly, even with same activities/gestures from one participant.

Setting. The placements of furniture and appliances can vary
from day to day in practical scenarios. These room objects reflect
and diffract WiFi signals, and thus the multi-path of WiFi signals
will be impacted by the placement changes of these objects. Similar
to environment variations, the multi-path changes will alter the
intensities and fluctuation patterns of CSI.

User.Many sensing applications (e.g., smart home control, health
care monitoring) are required to have reliable performance among
different users. However, the physiological (e.g., heights, length
of arm and leg) and behavioral characteristics (e.g., gesture pref-
erences) are varying from person to person. Such differences will
result in changes in CSI patterns, making it difficult to apply a
trained model for wireless sensing to a new user.

User’s Facing Direction.Ausermay also perform activities/gestures
with different facing directions. The changes in facing direction
will alter the angle of signals reflected and diffracted by the user’s
body, thereby impacting the signal patterns.

User’s Position. The user may also perform the activities/gestures
at slightly different positions every time, which results in different
relative distances/angles to theWiFi devices. As CSI is very sensitive
to distance/angle changes, the variations of the user’s position can
change the intensities and fluctuation patterns of CSI.

Timeline. Existing studies [9, 17, 18] reveal that CSI may change
over time (e.g., different time on one day or different days) due
to different temperatures, humidity, and hardware imperfections.
Thus, even when the wireless signal propagation conditions are
static (e.g., no furniture settings changes and human movements),
the intensities of CSI can be greatly different across timelines.

Impacts of Domain Variations. Without losing generality,
we illustrate the impacts of domain variations by performing the
user identification with different setting variations (i.e., furniture
placements). We consider using the feature extraction methods
and the deep learning models developed in an existing study [19].
The CSI data and classes are collected from 10 participants who
are asked to perform the same set of pre-defined activities (e.g.,
walking, sitting down). We separately collect three sets of CSI data
from three furniture settings, consisting of one sofa, one microwave
oven, three cabinets, and five chairs. Figure 1(a) shows the user
identification accuracy by using the CSI data under two furniture
settings for training. We can find that the models achieve close to
100% accuracies in the training setup, but the accuracies decrease
by over 30% if the testing CSI data is from a third (i.e., unseen)
furniture setting. These preliminary results show the significant
impacts of domain variations in traditional deep learning methods.

The key reason for the degraded performance of deep learning
under domain variations is attributed to the data drifts. The clas-
sifier in deep learning models (e.g., the last fully-connected layer
with SoftMax activation) assumes the training and testing data
follow the same distribution (i.e., i.i.d assumption) [24]. However,
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this assumption does not hold under the domain variations, where
the data drifts alter the distribution of testing inputs. As a result,
there may not have a class with an overwhelmingly high predicted
probability. Since a traditional classifier is designed to predict a
class with the maximum probability, misclassifications might occur.
Figure 1(b) illustrates this problem by showing the probability dis-
tributions of predicting a target user (i.e., User 1) based on CSI data
collected in a training environment (i.e., Env 1). When testing with
an unseen domain (i.e., Env 3), the classifier produces prediction
probabilities for all the users, among which User 1, 5 and 7 have
relatively higher values. In this example, instead of User 1 (ground
truth), User 7 is selected because of the related probability is slightly
higher than that of User 1. With this, we observe a typical case of
performance degradation in traditional deep learning models under
domain variations due to the violation of i.i.d. assumption.

3 SYSTEM DESIGN
3.1 Cross-Domain Conformal Prediction
Mathematically, conformal prediction uses a nonconformity mea-
surement function to examine how nonconformal (dissimilar) a WiFi
sample, 𝑠 , is compared to a calibration set derived from the training
data. Similar to a validation set for cross-validation, the calibration
set, whose name is from a prior work of conformal prediction [24],
is a small proportion of the dataset that is not overlapping with
the training data. Conformal prediction needs to first build a non-
conformity measurement function using the training dataset, and
then have a calibration dataset as the nonconformity profile. In the
inference phase, the nonconformity scores of the testing data are
compared with the profile to quantify the conformity.

We denote the calibration subset of the 𝑘𝑡ℎ class as 𝐶𝑘 , 𝑘 ∈
1 . . . 𝐾 , where 𝐾 is the total number of classes. Thus, the calibration
set can be denoted as 𝐶 = ∪𝐾

𝑘=1𝐶𝑘 . We denote the nonconformity
measurement function for the 𝑘𝑡ℎ class as 𝑓𝑘 (·). It is learned from
the feature representations of a subset of training data of class 𝑘 ,
which is non-overlapped with 𝐶𝑘 . The nonconformity score of 𝑠 is
then calculated via: 𝑎 (𝑠 )

𝑘
= 𝑓𝑘 (𝑠). The smaller 𝑎 (𝑠 )

𝑘
is, the less likely

the testing input fits into the profile of class 𝑘 . Conformal prediction
determines whether 𝑠 belongs to class 𝑘 by quantifying the degree
of conformity, denoted as 𝑑 (𝑠 )

𝑘
, which is the proportion of feature

representations that 𝑠 is conformal within 𝐶𝑘 . The quantification
process is essentially a comparison between the nonconformity
score of 𝑠 and samples in the calibration set. Given a significance
level 𝜖 and the degrees of conformity of all 𝐾 classes, conformal
prediction produces a predictive set {𝑘 : 𝑑 (𝑠 )

𝑘
≥ 1− 𝜖} ∈ {1, . . . , 𝐾}.

To achieve a valid conformity quantification, conformal predic-
tion requires 𝑠 to be exchangeable [25] with the feature representa-
tions in𝐶𝑘 . Different from the i.i.d assumption, the exchangeability
allows 𝑠 and the representation in 𝐶𝑘 drawn from a similar data
distribution. However, this assumption could still be violated in
practice when domain variations occur. To enable robust predic-
tions under domain variations, we design a cross-domain conformal
prediction framework that meets the requirement of exchangeabil-
ity, even when domain variations occur. Our idea is to include at
least two calibration subsets of CSI data from different domains.
Instead of using the calibration subset of a single domain, such an
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Figure 2: Overview of the designed cross-domain conformal
prediction framework.

approach quantifies the impacts of domain variations in terms of
nonconformity scores across two domains. It then leverages the
cross-domain nonconformity to score the degree of conformity
on 𝑠 , which may be from a third (unseen) domain. We design our
own nonconformity measurement function (e.g., 𝑓𝑘 (·)) and cali-
bration set (e.g., 𝐶𝑘 ) to realize such a cross-domain approach. The
detailed designs of our nonconformity measurement function and
calibration set are elaborated in Section 4.

Our cross-domain conformal prediction framework exhibits sev-
eral fundamental differences compared to prior solutions to domain
variations [4, 11, 19, 23, 32, 33]. First, it does not require collect-
ing any new CSI data and labels (e.g., from an unseen/unknown
domain) for retraining or adapting the deep learning model. In
contrast, prior domain-adaptation-based methods [11, 19] need to
use a considerable amount of new data (e.g., CSI data without la-
bels) collected from a target domain for retraining, so as to align
the data drifts between the training and testing data. RISE [32]
designs an anomaly detector with incremental learning based on
the intermediate features of conformal prediction to enhance the
robustness of machine learning models. That approach still requires
moderate human effort to label the misclassified data to retrain the
model. Second, our framework does not assume any prior knowl-
edge of the impacts of target domains, while prior studies relying
on data augmentation techniques [4, 23] need to synthesize the
distortions of domain variations on training data, which are diffi-
cult to generalize for unseen domains. Third, our framework works
as an orthogonal solution to domain variations compared to prior
approaches based on feature engineering and domain adaptation.
It does not require any new features or model updates, and thus it
can be easily integrated into current WiFi sensing systems.

3.2 Challenges
We face several key challenges to realize the proposed cross-domain
conformal prediction framework that enhances the robustness of
deep learning models under domain variations:

Quantifying the Nonconformity of Testing CSI Data. The
success of conformal prediction is built upon the effectiveness of
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the nonconformity measurement function 𝑓𝑘 (·), which quantifies
how dissimilar a testing CSI input is compared to a calibration set.
Existing parametric measurement algorithms (e.g., linear regression
and deep learning) rely on mathematically learning a well-defined
or predictable mapping relationship between the CSI testing data
and the target objectives. However, such a relationship can be
easily distorted under practical scenarios with data drifts caused by
domain variations. Thus, it is essential to design a nonconformity
measurement function that is robust to the data drifts.

Maximizing Training Data Utilization for Calibrating Con-
formal Prediction. Conformal prediction needs to build a noncon-
formity measurement function and a calibration set to quantify the
conformity. To enable effective conformity quantification, the data
used to build the nonconformity measurement function cannot be
reused in the calibration set. This practice limits the utilization of
the training data for calibration, resulting in suboptimal perfor-
mance. Therefore, it is desirable to have solutions fully utilize all
training data in the calibration set.

Satisfying Application-specific Requirements on Accuracy
and Size of Predicted Class Set. Different from traditional clas-
sifiers that output a single class label given a testing CSI input,
conformal prediction examines the degree of conformity on in-
dividual classes and produces a class set. Consequently, there is
a trade-off between the prediction accuracy (i.e., the class set in-
cludes the correct class label) and the number of predicted classes.
In reality, different applications have different requirements on the
accuracy and the number of predicted classes. For example, for
some personalized applications exploiting wireless sensing, such
as recommending TV content and adjusting room temperature, it
is desirable to minimize the number of predicted identities. This
capability is necessary to enable the applications to provide more
appropriate personalized services. We need to adapt our conformal
prediction framework based on such requirements.

3.3 Framework Overview
To address the aforementioned challenges, we design a cross-domain
conformal prediction framework as illustrated in Figure 2. We con-
sider a scenario where the labeled training CSI data are collected

under at least two training domains. The trained model based on
both deep learning and conformal prediction can directly operate
on new CSI data collected under various types of domain varia-
tions (e.g., the changes of room and furniture placement) without
re-training/adaptation. It does not require explicitly extracting new
features regarding specific domains. Instead, it quantifies the con-
formity of the testing input without assuming the types of domain
variations. To showcase the effectiveness of our framework, we ap-
ply our framework to three representative CSI-based applications:
gesture recognition, activity recognition, and user identification.

CSI Data Pre-processing. Our framework takes the time-series
CSI measurements fromWiFi-enabled devices (e.g., voice assistants,
smart refrigerators) as input. It first performs Spectrogram-based
Activity Detection & Segmentation that determines the CSI segments
of user activity/gesture through time-frequency analyses based on
CSI amplitudes. A set of time- and frequency-domain features are
extracted to characterize the user’s activity, identity, and gesture
uniqueness (e.g., speeds of motions, gesture preferences).

Feature Representation Derivation. Our framework then
employs deep learning models to further compute feature repre-
sentations, which are the outputs of the last layer prior to the
classifier. Existing studies [19, 20, 35] show that leveraging the fea-
ture representations from deep learning models for classification
is computationally efficient and is robust to small-scale input CSI
variations (e.g., minor activity differences across repeats). Also it
can be applied to different models (e.g., CNN, Hybrid CNN-RNN)
without any modifications to the model architecture.

Cross-domain Conformal Prediction. The core component
of our framework is a conformity quantification process based on
domain variations in the training dataset. Compared to traditional
conformal prediction, which relies on the data of a single domain,
our cross-domain framework leverages the nonconformity in data
across two (or more) training domains to quantify the conformity
of testing CSI data. Particularly, we build pairs of nonconformity
measurement function and calibration set for each individual do-
main in the training dataset. Such a quantification process meets
the requirement of exchangeability [25] even when domain vari-
ations occur. In addition, we design the Multi-fold Nonconformity
Measure that takes turns to use part of the data for calibration and
the rest to build the nonconformity measurement function. It uti-
lizes all training data in the calibration set and thus significantly
enhances the performance of nonconformity measure. To meet
the application-specific requirements on the prediction accuracy
and the number of classes, we develop two different approaches
to perform Cross-domain Conformity Quantification and determine
the class set, with priorities on maximizing the prediction accuracy
and minimizing the size of the class set, respectively.

4 CROSS-DOMAIN CONFORMAL PREDICTION
FRAMEWORK

4.1 Density Based Nonconformity Measure
Kernel Density Estimator. To achieve effective conformal predic-
tion, we first need to design a nonconformity measurement function
𝑓𝑘 (·) to quantify how nonconformal (dissimilar) the feature rep-
resentations of a testing CSI input, 𝑠 , is compared to those of a
calibration subset 𝐶𝑘 . The intermediate outputs of deep learning
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Figure 4: Illustration of conformity assessment through
jointly considering all nonconformity profiles from both
domains. Such a joint nonconformity profile helps to reduce
the number of classes in the class set.

model from the last dense layer prior to the classifier are used as
the feature representations. On appearance, existing classification
algorithms (e.g., SoftMax layer, linear regression, deep learning)
may also be used to quantify the nonconformity. For example, the
probability mapping relationship 𝑃 (𝑘 |𝑠) from SoftMax layer charac-
terizes the probability of the input 𝑠 belongs to a class 𝑘 . However,
based on Bayes’ theorem, we have 𝑃 (𝑘 |𝑠) = 𝑃 (𝑠 |𝑘 )𝑃 (𝑘 )

𝑃 (𝑠 ) , where the
distribution of the CSI data, 𝑃 (𝑠), can be significantly impacted by
domain variations. Thus, these classification algorithms are not
reliable under domain variations. To address this challenge, instead
of 𝑃 (𝑘 |𝑠), we exploit the probability mapping relationship 𝑃 (𝑠 |𝑘)
to quantify the nonconformity of the CSI input against a class 𝑘 , in
order to achieve robustness under domain variations.

In our framework, we adopt the multivariate kernel density
estimator (KDE) as the nonconformity measurement function [6]
to quantify whether a new input point 𝑠 belongs to the 𝑘𝑡ℎ class
or not (i.e., estimating 𝑃 (𝑠 |𝑘)). The KDE approach has shown to
have optimal performance under weak assumptions on the testing
data [13], where the data drifts may occur. Multivariate KDE is
a non-parametric estimator based on the distribution of a data
set. In our study, the data is from a training set of class 𝑘 : 𝐵𝑘 =

{𝑥𝑘,1, . . . , 𝑥𝑘,𝑚𝑘
}, where𝑚𝑘 is the size of the set. The multivariate

KDE is then specified as follows:

𝑓𝑘 (𝑥) =
1
𝑚𝑘

𝑚𝑘∑︁
𝑖=1

𝐾𝐻 (𝑥 − 𝑥𝑘,𝑖 ), (1)

where 𝐾𝐻 (·) is a multivariate kernel, a symmetric probability den-
sity function; 𝐻 is a bandwidth matrix, which is a diagonal matrix
with 1 in all the diagonal elements; 𝐾𝐻 (𝑥) = |𝐻 |−1/2𝐾 (𝐻−1/2𝑥),
where 𝐾 (·) is a Gaussian Kernel. When a KDE is fitted, we can use
it as our nonconformity scores for any data point, either from a test
CSI input (e.g., 𝑠), or a calibration set (e.g., 𝐶𝑘 ), by replacing 𝑥 with
the values of the particular feature representations.

Multi-fold Nonconformity Measure. Existing approaches of
conformal prediction need to build a nonconformity measurement
function using the training dataset and a nonconformity profile
using the calibration dataset to quantify the conformity. As dis-
cussed in Section 3.1, the training data is not overlapping with the
calibration dataset, which is similar to the structure of the train-
validation setup in the cross-validation. Such a practice limits the
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Figure 5: Illustration of conformity assessment through sep-
arately considering the nonconformity profile from each
domain. Such a scheme helps to enlarge the prediction re-
gion of conformal prediction.

utilization of the dataset because only a small proportion of dataset
will be used to construct the nonconformity profile, resulting in
suboptimal performance. To address this challenge, we explore a
multi-fold approach to fully utilize all training data. We illustrate
our multi-split nonconformity measurement function in Figure 3.
For the data of each domain, we partition the data into 𝑁 folds of
equal size. We leave one fold as the calibration set (𝐶𝑘 ) and use
the remaining 𝑁 − 1 folds (𝐵𝑘 ) to build the multivariate KDE. We
repeat this process 𝑁 times for each domain until all folds have
been used as the calibration set once. For each testing input, our
framework learns 𝑁 nonconformity measurement functions regard-
ing each domain. We refer to the nonconformity scores from all the
𝑁 calibration subsets as the nonconformity profile.

4.2 Cross-domain Conformity Assessment
Class Set Prediction based on Nonconformity Profile. For each
pair of nonconformity measurement functions 𝑓𝑘 (·) and calibration
set 𝐶𝑘 , conformal prediction compares the of the calibration set of
class 𝑘 and computes the degree of conformity, which quantifies the
level of uncertainty on feature representations 𝑠 of a testing input.
The smaller the degree of conformity, the more similar 𝑠 compared
to the feature representations in 𝐶𝑘 . We denote the calibration set
as, 𝐶𝑘 = {𝑠𝑘,1, ..., 𝑠𝑘,𝑛𝑘 }, where 𝑛𝑘 is the size of 𝐶𝑘 . We use 𝑓𝑘 (·) to
get the nonconformity scores for each set of feature representations
in the calibration set: {𝑎𝑘,1, 𝑎𝑘,2, ..., 𝑎𝑘,𝑛𝑘 }. For a calibration set and
the nonconformity score of the testing CSI input 𝑎 (𝑠 )

𝑘
, the degree

of conformity can be computed via:

𝑑
(𝑠 )
𝑘

=
𝐶𝑂𝑈𝑁𝑇 {𝑖 ∈ {1, ..., 𝑛𝑘 } : 𝑎𝑘,𝑖 ≥ 𝑎

(𝑠 )
𝑘

}
𝑛𝑘

, (2)

where𝐶𝑂𝑈𝑁𝑇 (·) denotes the operation of counting the number of
𝑛𝑘 instances that meet the criteria (i.e., 𝑎𝑘,𝑖 ≥ 𝑎

(𝑠 )
𝑘

). The degree of
conformity is essentially the proportion of feature representations
in the calibration set with nonconformity scores greater than the
testing CSI input. If the degree of conformity is large, the testing
CSI input is conformitive (similar) to the calibration set. It is likely
that the input 𝑠 belongs to class 𝑘 . Otherwise, the testing input is
non-conformitive (dissimilar) to the calibration set. Based on 𝑑 (𝑠 )

𝑘
,

our framework performs a test to determine whether to include
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class 𝑘 in the class set. Given a significance level 𝜖 and the degree
of conformity of all 𝐾 classes, conformal prediction produces a
predicted set {𝑘 : 𝑑 (𝑠 )

𝑘
≥ 1 − 𝜖} ∈ {1, . . . , 𝐾}. The larger the 𝜖 ,

the smaller the prediction region, meaning that fewer number of
classes would be included in the class set.

Equation 2 formulates the computation of degree of conformity
given a single pair of nonconformity measurement function 𝑓𝑘 (·)
and calibration set. In our framework, we consider calculating the
degree of conformity based on multiple nonconformity measure-
ment functions and calibration sets from all𝐷 domains. This will en-
able effective conformal prediction under domain variations. Based
on different requirements forWiFi sensing, we develop two schemes
that fuse the nonconformity measurement functions and calibration
sets. Specifically, we design Domain Fusion Based on Nonconformity
Profile to minimize the size of the predicted class set, and we also
develop Domain Fusion based on Degree of Conformity to maximize
the probability the predicted set includes the correct label.

Domain Fusion based on Nonconformity Profile. To mini-
mize the size of the predicted set, our idea is to reject classes with
feature representations nonconformal to the majority of the data
across all training domains. To realize such a rejection process, as
illustrated in Figure 4, we select the maximum nonconformity score
from the scores derived with all 𝐷 ×𝑁 KDEs as 𝑎 (𝑠 )

𝑘
for computing

the degree of conformity. It quantifies the maximum dissimilarity
between 𝑠 and all calibration subsets. We concatenate and sort the
nonconformity scores of calibration subsets from all𝐷 domains and
all 𝑁 folds to generate𝐶𝑘 , which includes nonconformity scores of
all folds (i.e., all training data). Under such a setting, 𝑎 (𝑠 )

𝑘
will lay

on the tail of the nonconformity scores distribution if 𝑠 is dissimilar
to the majority of the domains (i.e., calibration subsets of all train-
ing domains). To take into considerations of the scale differences
among different calibration subsets, we normalize the nonconfor-
mity scores of each subset to zero mean and unit variance before
the concatenation. Our framework then computes the degree of
conformity, which is the proportion of nonconformity scores in
𝐶𝑘 greater than 𝑎 (𝑠 )

𝑘
as we formulated in Equation 2. Based on the

degree of conformity, our framework then determines whether 𝑠
belongs to class 𝑘 . We repeat such a conformity quantification for
all 𝐾 classes to obtain the final predicted set.

Domain Fusion based on Degree of Conformity. To enhance
the prediction accuracy, we propose to compute degree of confor-
mity based on individual domains and leverage the average degree
of conformity for class set prediction. By separately considering
the degree of conformity of different training domains, the scheme
leads to larger prediction regions, making the generated class set
to have a higher probability to include the correct class. We illus-
trate the flow of our scheme in Figure 5. For each training domain,
we concatenate the calibration subsets of 𝑁 folds to generate 𝐶𝑘 .
We perform the same normalization process as described above to
remove the scale differences among different calibration subsets.
The maximum nonconformity score from the 𝑁 KDEs is used to
compare with 𝐶𝑘 to compute the degree of conformity. Our frame-
work then uses the averaged degree of conformity of all training
domains to determine whether 𝑠 is belonging to predicted class 𝑘 .
We apply this process for all 𝐾 classes to produce the final class set.

Such a fusion scheme extends the prediction regions for achieving
higher prediction accuracy.

5 PERFORMANCE EVALUATION
5.1 WiFi Datasets
Public Dataset for GestureRecognition.We evaluate the gesture
recognition performance of our framework onWidar3.0 dataset [35].
It is a public gesture dataset involving 4 types of domain variations,
including environment, user, user’s facing direction, and user’s po-
sition variations. CSI data of 6 gestures (i.e., pushing & pulling,
sweeping, clapping, sliding, drawing a circle, and drawing a zigzag)
conducted by 9 persons are collected. TheWiFi packet transmission
rate is 1000 packets per second. To examine the impacts of envi-
ronmental changes, we use the CSI data collected in three rooms
with different layouts, including an empty classroom, a spacious
hall, and an office room, furnished with desks and chairs with a
2𝑚 × 2𝑚 square sensing area. The dataset contains gesture data
from 5 locations (northwest, northeast, southwest, southeast and
the center) and 5 orientations (facing northwest, north, northeast,
east and southeast) in the sensing area. The CSI data collected from
5 positions and 5 orientations are used to evaluate our framework
under position and orientation variations, respectively.

Self-collected Dataset for Activity Recognition/User Iden-
tification. To further evaluate our approach in real environment
settings, we collect our own dataset under setting, user, user’s posi-
tion, and timeline variations. Two laptops equipped with Intel 5300
NICs are used to collect CSI data. We collect CSI data of 6 activities
(i.e., picking up a remote control, sitting, exercising, using a stove,
and walking in two different trajectories) performed by 10 users in
a residential apartment. The residential apartment has the size of
33ft × 17ft and the office has the size of 21ft × 12ft. The residential
apartment includes common room objects, such as sofas, home ap-
pliances, chairs, and desks. To emulate setting variations, we collect
the data under three different furniture settings, with one sofa, one
microwave oven, three cabinets, and 5 chairs moved at least 3ft
for each setting. To study user’s position variations, we collect CSI
data of 3 activities (i.e., sitting, stretching the body, and typing on a
keyboard) in an office. The office environment has different types
of furniture, such as desks, chairs, and cabinets. For each activity,
the user is asked to perform the activity at 5 different proximate
positions at least one foot away from each other. The experiment
is repeated in the morning, afternoon, and night of a same day for
evaluating our framework’s robustness across different timeline.

5.2 Deep Learning Models
While our cross-domain conformal prediction framework should
work for all deep learning models, we particularly focus on the
following models designed for the three applications.

Gesture Recognition Model. We implement a hybrid CNN-
RNN model based on the method of Widar3.0 [35]. In particular, we
use Doppler Frequency Shift (DFS) [29] extracted from the spectro-
gram of CSI amplitude as the feature for recognizing gestures under
different domain variations. The hybrid CNN-RNN model leverages
a 2D constitutional layer, a pooling layer, two fully-connected lay-
ers, and a single layer of gated recurrent units to learn the temporal

mason
Highlight
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patterns in CSI. A fully connected layer with SoftMax activation
function is used as the classifier for gesture recognition.

Activity Recognition Model. We implement a CNN-based
model based on existing work [19] for activity recognition. The
model takes normalized amplitude and spectrogram of CSI as in-
puts under different variation scenarios. The CNN model adopts
3 convolutional layers to learn the time and frequency features in
CSI, respectively. Two fully-connected layers followed by a SoftMax
activation function are used to predict the class of activities. Note
that we did not implement the domain discriminator, which needs
to be trained with CSI data from a target domain.

User Identification Models. We adopt the same deep learning
model architecture for user identification as the one developed for
activity recognition. Unlike activity recognition, we use the labels
of users’ identities with normalized amplitudes and spectrograms
of CSI to train the model for user identification.

5.3 Evaluation Setup and Methodology
Baseline Methods.We use the models introduced in Section 5.2
to derive feature representations. To perform conformal prediction,
we replace the classifier with our framework to calculate the degree
of conformity. We compare the performance of our framework
with the original deep learning models relying on the classifiers for
gesture recognition/activity recognition/user identification.

Evaluation Metrics. We focus on using the following two met-
rics to evaluate our framework. 1) Gesture Recognition/Activity
Recognition/User Identification Accuracy: this is the percentage of
the testing CSI data being included in the class sets predicted by
our framework. Note that the class set produced by conformal pre-
diction may contain no labels, a single label, or multiple labels. This
is because conformal prediction quantifies the conformity (uncer-
tainty) of the testing data and dynamically determine a class set.
It is essentially different from traditional classification approaches
that output the probabilities of a single or a set of top-k labels. Thus,
we use classification accuracy to examine the performance based on
the original paper on conformal prediction [24], instead of top-k ac-
curacies or precision/record or F1 scores, which normally assumes
a singleton or a fixed number of labels in the prediction. 2) Average
Number of Classes: this is the mean of the size of the predicted sets
predicted by our framework. It is desirable to have a small number
of classes in the predicted set. As there is a trade-off between the
accuracy and the number of classes, we show all the results with
both metrics. We repeat our experiments three times and produce
barplots of prediction accuracies and boxplots of number of labels
in the predicted sets under each scenario.

5.4 Performance Across Environments
Firstly, we show the performance of our framework on across-
environment gesture recognition using the Widar3.0 dataset. The
gesture data is collected in three rooms of different sizes. We first
use data from any two rooms to construct nonconformity measure
and calibration sets, then make predictions for the users in the
third (unseen) room. Figure 6(a) displays the gesture recognition
performance of our framework compared with the baseline. We
find that the baseline model has 27.2% accuracy due to the signifi-
cant impacts from room variations. In contrast, our cross-domain
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(a) Gesture recognition accuracy under en-
vironment variations
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(b) Boxplots of number of classes under
environment variations

Figure 6: Training-Testing Combinations Across Environ-
ments, Gesture Recognition: Gesture recognition accuracy
(a) and the boxplots of number of classes (b) based on the
Widar3.0 dataset. The gesture data is collected in three dif-
ferent rooms. For each combination (e.g., Room 1), we use
data of two rooms (i.e., other than Room 1) for constructing
nonconformity measure and calibration sets and the data of
Room 1 for testing. 𝜖 is chosen to be 0.35 and 0.28 for profile-
based and conformity-based fusion approaches, respectively.

framework has much higher gesture recognition accuracy. The final
results are 65.5% and 72.8% for the two fusion approaches, which
improve significantly over the baseline results. Even under large
scale domain variations like room changes, our framework can still
keep the system accuracy at about 70%. Although the results are
still lower than 80%, our framework shows significantly improve-
ment on the classification performance, improving the accuracy to
about 40% from 27% of the baseline without applying the confor-
mal prediction method. The results demonstrate our conformity
assessment via conformal prediction is more reliable compared to
the traditional classifiers. The numbers of classes for the two ap-
proaches are shown in Figure 6(b) and the average of both are 2.9
and 3.0. The profile-based approach has a smaller average number
of classes. This is because the aggregated calibration set excludes
classes dissimilar to the testing input.

5.5 Performance Across Settings
Activity Recognition under Furniture Setting Variations. Sec-
ondly, we evaluate activity recognition task under across-setting
using our self-collected apartment datasets. The data is collected
in one apartment room with three furniture settings. We use the
data from two of the settings for training the deep learning model
and constructing nonconformity measure and calibration sets. We
apply our conformal prediction framework for activity recognition
in a third (unseen) setting. Figure 7(a) gives the activity recogni-
tion accuracies of our framework and the baseline. We find that
the baseline model has an average 68.1% accuracy due to setting
variations. In contrast, our framework has average net accuracy
improvements of 27.3 and 29.2% respectively under the two fusion
approaches. Our system accuracy is over 90% in general and can be
as high as 98.8% in some settings. The average numbers of classes
of the two approaches are 1.2 and 2.5 respectively as shown in
Figure 7(b). Based on these experiments, profiled-based approach is
better to handle tasks with strict requirement of number of classes,
while the conformity-based approach is needed if the application
would like to relax the tolerance of number of classes.
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(a) Activity recognition under setting vari-
ations
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(b) Boxplots of number of classes under
setting variations
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(c) User identification under setting varia-
tions
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(d) Boxplots of number of classes under
setting variations

Figure 7: Training-Testing Combinations Across Settings, Ac-
tivity Recognition and User Identification: Activity recogni-
tion accuracy (a), user identification accuracy (c) and the box-
plots of number of classes (b)(d) based on the self-collected
apartment dataset. The data is from three furniture settings.
For each combination (e.g., Setting 1), we use data of two
settings (i.e., other than Setting 1) to build nonconformity
measure and calibration sets while the data of Setting 1 for
testing. 𝜖 is 0.02 for both profile-based and conformity-based
fusion approach for activity recognition. For user identifica-
tion, 𝜖 is selected to be 0.03 and 0.04 for two fusion approaches.

User Identification under Furniture Setting Variations.We
also show the user identification performance under the same apart-
ment dataset and experiment setup. The results are in Figure 7(c).
The average accuracy improvements of the two approaches are
12.4% and 23.6% which bring the system performance up to 79.8%
and 91.2% compared to the baseline. Figure 7(d) is the boxplot of
numbers of predicted classes with average 1.2 and 1.8. We have
similar observations on the trade-off between the accuracy and the
number of classes for the two approaches.

5.6 Performance Across Users
Activity Recognition under User Variations. We show the per-
formance of our framework on self-collected apartment dataset
under user variations. The data is the same as those used for user
identification/activity recognition. We use the data of four users for
training and a fifth (unseen) user for testing. Figure 8(a) gives the
activity recognition performance of our framework and the base-
line, which is average at 63.0%. Our proposed conformal prediction
is able to provide 21.4% and 30.9% accuracy improvement and bring
the system performance to 84.4% and 93.9% with average number
of classes 1.6 and 1.9 as shown in Figure 8(b).

Gesture Recognition under User Variations.We also show
the performance of gesture recognition on Widar3.0 dataset under
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(a) Activity recognition under user varia-
tions
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(b) Boxplots of number of classes under
user variations
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(c) Gesture recognition under user varia-
tions
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(d) Boxplots of number of classes under
user variations

Figure 8: Training-Testing Combinations Across Users, Activ-
ity Recognition and Gesture Recognition: Activity recogni-
tion accuracy (a), gesture recognition accuracy (c) and the box-
plots of number of classes (b)(d) based on the self-collected
apartment dataset and public Widar3.0 dataset respectively.
The activity data is collected from ten different users, and
Widar3.0 dataset contains data of nine different users. For
each combination (e.g., User1), we use data of random four
users(i.e., other than User1) to build nonconformity measure
and calibration sets and the data of User1 for testing. 𝜖 is
0.01 for both profiled-based and conformity-based fusion ap-
proaches for activity recognition. For gesture recognition, 𝜖
is chosen to be 0.15 and 0.3 respectively.

user variations. We use data from four users to construct noncon-
formity measures and calibration sets and test the result on one
of the unseen user. The baseline of gesture recognition under user
variations is as low as 27.1%. With our proposed method, the per-
formance can be improved to over 80% and can be as high as 96.7%.
The average numbers of classes are 2.2 and 2.5 for the profiled-
based and the conformity-based fusion approaches respectively.
The results demonstrate that our conformal prediction can retain
model performance even if the performance of the deep learning
model drops to a very low level.

5.7 Performance Across User’s Facing
Directions

Gesture Recognition under User’s Facing Direction Varia-
tions. We then study the performance of our framework under
user’s facing direction variations for gesture recognition on the
Widar3.0 dataset. The data is collected in a position with five dif-
ferent facing directions of the user. We use the data of two di-
rections for training. We then test the deep learning model and
cross-domain conformal prediction in a third (unseen) direction.
Figure 9(a) presents the user identification performance of our
framework and the baseline. We find that the average accuracy of
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(a) Gesture recognition under user’s fac-
ing direction variations
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(b) Boxplots of number of classes under
user’s facing direction variations

Figure 9: Training-Testing Combinations Across User’s Fac-
ing Directions, Gesture Recognition: Gesture recognition
accuracy (a) and the boxplots of number of classes (b) based
on the public Widar3.0 dataset. The data is collected at one
spot with five facing directions. For each combination (e.g.,
(Dir)ection 1), we use data of two facing directions (i.e., other
than Dir. 1) for constructing nonconformity measure and
calibration sets and the data of Dir. 1 for testing. 𝜖 is selected
to be 0.17 and 0.06 with the two fusion approaches.

the baseline model is 50.3%. Our proposed method turns out to be
robust to such variations with the average gesture recognition accu-
racy of 78.8% and 80.2% for the profiled-based fusion approach and
the conformity-based fusion approach respectively. The average
numbers of classes are 2.2 and 2.4 as shown in Figure 9(b). Though
addressing the impacts of facing directions is challenging for confor-
mal prediction because the high similarity between domains makes
uncertainty assessment hard to benefit from the cross-domain in-
formation, our fusion methods are still able to provide close to 30%
accuracy improvement.

5.8 Performance Across User’s Positions
User Identificationunder Proximate PositionVariations.Here
we present the performance of user identification with proximate
position variation using our self-collected office dataset. The dataset
is collected in five different proximate positions in an office envi-
ronment. We use the data of two positions for constructing the
nonconformity measure and calibration sets. We then test the DNN
model with our proposed schemes in a third (unseen) position. Fig-
ure 10(a) gives the user identification accuracies of our framework
and the baseline. We find that the baseline model has an average
accuracy of 63.3%. Our cross-domain framework is robust to such
variation and bring the average accuracy to 78.2% and 87.5% for
profile-based schemes and conformity-based schemes respectively.
The average numbers of predicted classes of the two schemes are
1.8 and 2.6 as shown in Figure 10(b). The results demonstrate the
effectiveness of our scheme on improving the model’s robustness.

Gesture Recognition under Torso Location Variations. At
the same time Figure 10(c) shows our proposed method also works
for gesture recognition under torso location variation using the
Widar3.0 dataset. The baseline of DNNmodel has accuracy of 23.7%.
We utilize the data from two torso locations for training and the data
from a third (unseen) location for testing. Our proposed method is
able to bring the system accuracy to average 68.2% and 80.7% with
average number of classes 1.5 and 3.0 (as shown in Figure 10(d)).
This demonstrates that our proposed method not only works for
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(a) User identification under user’s posi-
tion variations
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(b) Boxplots of number of classes under
user’s position variations
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(c) Gesture recognition under user’s posi-
tion variations

Loc. 1 Loc. 2 Loc. 3 Loc. 4 Loc. 5

User's Position Variations

2

4

6

8

10

N
u

m
b

e
r 

o
f 

C
la

s
s
e
s

Total Number of Classes

Profile-based fusion

Conformity-based fusion

(d) Boxplots of number of classes under
user’s position variations

Figure 10: Training-Testing Combinations Across User’s Po-
sitions, User Identification : User Identification accuracy (a),
Gesture Recognition accuracy (c) and the boxplots of num-
ber of classes (b)(d) based on the self-collected office dataset
and public Widar3.0 dataset. The user identification data
is collected from five positions. For each combination (e.g.,
(Pos)ition 1), we use data of two positions (i.e., other than
Pos. 1) for constructing nonconformity measure and calibra-
tion sets and the data of Pos. 1 for testing. 𝜖 is 0.02 for both
profile-based and conformity-based fusion approaches. Simi-
larly, gesture recognition data is collected from five different
torso locations. The experiment setup is the same as user
identification task. 𝜖 is chosen to be 0.15 and 0.3 respectively.

large variations such as room variation or furniture setting varia-
tion, it also works for relatively small variation.

5.9 Performance Across Timelines
Finally, we show the performance of user identification across
timelines using the self-collected office dataset. The data is collected
in three time frames: morning, afternoon and evening. We use the
data from two of three time frames for training and calibration of
our cross-domain conformal prediction system. Then we use the
data of remaining time frame for testing. Figure 12(a) shows the
user identification performance of our framework and the baseline.
We find that the accuracy of baseline model can be as low as 29.8%
due to the significant variations in the wireless channel conditions
across the day. In comparison, our framework is robust to such
variations. The average user identification accuracy improvements
are 33.3% and 41.2% and bring the system performance to as high
as 79.1% and 87.0% for the profiled-based fusion approach and
the conformity-based fusion approach respectively. The average
predicted numbers of classes are 2.2 and 2.4 as shown in Figure 12(b).
The results demonstrate that our proposed method can handle
domain variations of both spatial and temporal changes.
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(d) Number of Feature Representations

Figure 11: Performance of conformal prediction under different parameter settings.
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(a) User identification under time varia-
tions
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(b) Boxplot of number of classes under
time variations

Figure 12: Training-Testing Combinations Across Time, User
Identification: User identification accuracy (a) and the box-
plots of number of classes (b) based on the self-collected
office dataset. The data are collected from three time of the
day. For each combination (e.g., Morning), we use data of two
time of the day (i.e., other than Morning) for training and
the data of Morning for testing.

5.10 Impacts of Framework Parameters
Impact of the Number of Training Domains. We showcase
the impacts of number of training domain using user variations.
In our previous experiments, we use 4 users for training, which
is necessary to train the feature extractor of our DNN model. We
illustrate this point and study the impact of the number of training
domains in this section. We perform activity recognition task on
self-collected apartment dataset, which has 10 users and 6 activ-
ities. Following the same experiment setup as subject variation,
we compare the system performance using different numbers of
users as training data. As shown in Figure 11(a), the DNN model
has accuracy as low as 28% if there are only 2 users as training
data. The DNN model performance will gradually improve with
the increasing number of users in training set. The conformal pre-
diction performs differently compared to DNN model. With as few
as 4 users, the conformal prediction has accuracy above 84.4% and
93.9% with average number of predicted classes 1.6 and 1.9 for
profile-based and conformity-based fusion schemes, respectively.
This illustrates that conformal prediction can be effective without
involving too many domains. This is a big advantage compared to
traditional deep learning method in real-world applications.

Impact of the Number of Folds. Our proposed method has a
key component which is the N-fold stratified splitting. We study
the impact of number of folds on activity recognition with across
furniture placement setup. Figure 11(b) displays the results with fold
number 1 ∼ 10, and 16. The average number of predicted classes
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Figure 13:WiFi sensing tasks without domain variation. Each
of Gesture Recognition, Activity Recognition or User Identifi-
cation task is performed with one of (W)idar3.0, (A)partment
or (O)ffice dataset(e.g., Gesture(W) is Gesture Recognition
task with Widar3.0 dataset). The average number of classes
is labeled on top of the bar plot.

becomes stable after 5 folds and the performance accuracy reach
the peak at 8 folds. The results show that the a relatively larger
number of fold can boost the performance of conformal prediction.

Impact of Significant Level–𝜖(%). In this study, we choose
different 𝜖 to balance the competing requirements of high accuracy
and low number of predicted classes. In the previous experiments,
we select the 𝜖 to achieve the highest possible prediction accuracy
with the average number of classes under 3 when all tasks have at
least 6 classes. In this section, we study the impact of 𝜖 on the per-
formance of our proposed framework. We conduct this evaluation
using the activity recognition task with across furniture placement
setup. As shown in Figure 11(c), the average number of predicted
classes and prediction accuracy will decrease when 𝜖 is increasing.
Note that 1 − 𝜖 is the usual confidence level. When the confidence
level is decreasing (i.e., the significant level is increasing), the model
will reduce the size of predicted set. This also leads to performance
drop because the true class is more likely to be missing from the
predictions. It is also worth noting that when the confidence level is
100% (i.e., significant level is 0), the prediction accuracy is 100% and
the average number of classes is 6 (out of 6). This is because only
when including all classes, we are 100% in confidence to claim that
the true class is included in the outputs. Since all classes are in the
prediction set, the accuracy is 100% trivially. From our experiments,
the average number of predicted classes decreases sharply at the
significant level of 0.01 for the profile-based method and 0.02 for
the conformity-based method. As a result, we choose 0.02 for 𝜖 in
our experiments by using the elbow method [22].

Impact of Feature Representation Dimensions. Similar with
traditional deep learning method, the model performance is di-
rectly related to the quality of features. In this study, our features
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Figure 14: Training-Testing Combinations Across Settings,
Activity Recognition: Activity recognition accuracy based on
the self-collected apartment dataset. The data is from three
furniture settings. For each combination (e.g., Setting 1), we
use data of two settings (i.e., other than Setting 1) to build
nonconformity measure and calibration sets while the data
of Setting 1 for testing. 𝜖 is 0.02 for both profile-based and
conformity-based fusion approach for activity recognition.

are the feature representations from the last dense layer of DNN
models. Choosing the right number of feature representations is
critical for conformal prediction to produce reliable results. We
study this parameter on activity recognition with across furniture
placement setup by obtaining the prediction results with the num-
bers of representations to be 16, 24, 32, 40, 48, 56, and 64. As shown
in Figure 11(d), the DNN model becomes unstable when the num-
ber is greater than 40, while conformal prediction still maintains
high prediction accuracy. When the representation number is 32,
conformal prediction reaches the highest prediction accuracy and
the smallest average number of classes. Besides, DNN also reaches
its highest accuracy with 32 as the number of neurons of its last
dense layer before SoftMax layer. This study indicates that though
conformal prediction is robust to the number of feature representa-
tions, it still benefits from a carefully tuned DNN parameter. The
fact that conformal prediction is not sensitive to such parameter
changes makes it easier to be deployed in real life scenarios.

5.11 In-Domain Accuracy
We show that conformal prediction is effective under cross domain
setup, it is still unknown how it performs without domain varia-
tion. In this section, we show the results of Gesture Recognition
on Widar3.0 dataset, Activity Recognition on Apartment dataset
and User Identification on both Apartment and Office dataset. As
shown in Figure 13, four tasks has the baseline accuracies of 79.77%,
97.98%, 97.99%, 96.88%. The profile-based conformal prediction has
accuracies of 94.66%, 98.62%, 99.01%, 98.72% with average number
of classes of 1.19, 1.02, 1.07, 1.09 and conformity-based conformal
prediction accuracies of 98.99%, 99.89%, 98.91%, 99.24%with average
number of classes of 1.21, 1.06, 1.13, 1.15 respectively. Conformal
prediction is able to provide marginal improvement on top of the
high baseline accuracy under in-domain setup without involving
many multiclass predictions. The results confirm the effectiveness
of conformal prediction on testing data without domain variations.

5.12 Computation Cost
To evaluate the computation cost of our framework as the step of
kernel density estimation might be computationally intensive, we
measure the average inference time of CNN baseline, profile-based
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Figure 15: Computation cost of Across Settings, Activity
Recognition: Activity Recognition computation cost on the
self-collected apartment dataset. The data are collected from
three furniture settings. For each combination (e.g., other
than Setting 1) to build nonconformity measure and calibra-
tion sets while the data of Setting 1 for testing. 𝜖 is 0.02 for
both profile-based and conformity-based fusion approach
for activity recognition.

conformal prediction, and conformity-based conformal prediction
using activity recognition across different furniture placement se-
tups. As shown in figure 15, three settings have the baseline com-
putation cost of 10.57ms, 11.03ms and 14.72ms. In comparison, the
profile-based conformal prediction adds an extra cost of 0.93ms,
0.87ms, 0.98ms, and extra costs of 0.53ms, 0.57ms and 0.57ms for
conformity-based conformal prediction. The results show that our
framework based on kernel density estimation only incur less than
1ms computational costs per sample.

5.13 Comparing with Standard Conformal
Prediction

As explained in the section 3.1, the proposed design is to meet the
requirement of exchangeability. In figure 14, we further demon-
strate the necessity of such design over the standard setup. We find
that though the traditional conformal prediction setup improves
the performance over the standard setup. The traditional conformal
prediction method improves by average 12.7% over the deep learn-
ing baseline. Our proposed method is much better with 27.4% and
29.2% improvements under the two fusion mechanisms respectively.
Therefore, our system is more robust in real life scenario.

6 DISCUSSION
Reducing the Number of Predicted Classes. Our work is the
first attempt to exploit conformal prediction to address domain vari-
ations in WiFi sensing. We demonstrate through extensive experi-
ments that our framework can significantly boost the performance
of WiFi sensing systems under six types of representative domain
variations, while maintaining a reasonable number of class labels
in the prediction results. Such a capability allows wireless sensing
to support many real-world applications without any stringent
requirements on the number of predicted classes. Those applica-
tions include health care monitoring, smart home control, and per-
sonalized service (e.g., suggesting TV viewing contents, adjusting
temperature/lighting), etc. We are aware that the current frame-
work is not ready for applications requiring a singleton prediction
(e.g., user authentication). More sophisticated algorithms to fuse
the nonconformity scores and calibration sets of multiple domains



Solving the WiFi Sensing Dilemma in Reality
Leveraging Conformal Prediction SenSys ’22, November 6–9, 2022, Boston, MA, USA

could be designed to improve the quantification of the degree of
conformity, leading to more precise results.

Combining with Other Approaches.Our framework provides
a solution orthogonal to existing approaches to improve the robust-
ness of Wi-Fi sensing systems against domain variations. It can be
easily combined with existing machine-learning-based approaches
to enhance prediction performance. For instance, as our framework
leverages deep learning to generate feature representations, domain
adaptation techniques [10, 19] can be utilized to learn more robust
representations that can improve the conformity quantification
performance. In addition, we may apply data augmentation [33]
to expand the dataset and construct more effective nonconformity
measurement functions and larger calibration sets.

Leveraging Data from More Domains. In Section 5.10, our
framework’s performance is studied when different numbers of
users were used as domains for activity recognition. As shown in
Figure 11(a), the number of labels is reduced as the number of the
training domain increases. It means that by leveraging data from
more domains (i.e., more number of users) will have less uncer-
tainty in generating the class set. In the future, we plan to explore
algorithms that can fuse the nonconformity scores and calibration
sets of multiple domains. This will improve the quantification of
conformity measurements for more precise results.

Generalizing to other implementations.Our proposed frame-
work grounded on conformal prediction is a versatile solution to
the Wi-Fi sensing dilemma in reality. As shown in section 5, we
demonstrate through extensive experiments that our framework
is feasible for the three most representative Wi-Fi sensing appli-
cations. Only requiring the representations, our framework can
be applied to any deep learning models, including classification
models to quantify the conformity between source and target data,
where domain variations may occur in the inference phase. For
example, our framework can be applied to localization systems by
examining the conformity of CSI data regarding Wi-Fi fingerprints.

7 RELATEDWORK
WiFi Sensing based on Deep Learning. With the strong capabil-
ities to model complex mapping relationships, deep learning has
been widely used to support various WiFi sensing tasks, includ-
ing but not limited to gesture recognition [2, 14], activity recogni-
tion [26, 28], user identification/authentication [12, 20], localiza-
tion [1], and emotion detection [34]. These approaches features ex-
tracted from WiFi measurements into an output, with classification
as the most prominent learning task. For example, WiSDAR [26]
combines convolutional neural network with long short term mem-
ory units to classify WiFi signals of multiple antennas into a set
of human activities. Shi et al. [20] design a system that extracts
statistical features from CSI measurements associated with human
daily activities and leverages an encoder-decoder-based network
to identify users. These approaches and systems have shown the
feasibility and initial success of WiFi sensing. However, they all face
the challenge of domain variation problem, where the classification
performance degrades significantly when reality factors change.

Existing Approaches toMitigate Domain Variations. Efforts
have been made to investigate the domain variation problems in

the context of WiFi sensing [4, 11, 19, 23, 35]. For example, data aug-
mentation [4, 8] has been exploited to generate synthetic or virtual
training WiFi data to improve the robustness of deep learning mod-
els under domain variations. Domain adaptation techniques [11, 19]
are used to transfer the knowledge learned from one WiFi environ-
ment to a target environment, by leveraging unlabeled WiFi data
collected in the target environment. However, these approaches re-
quire to generate new features or retrain/adapt the model, unlikely
to cover all possible domain variations in reality.

Conformal Prediction.Different from learning-based approaches
relying on deriving a mapping relationship, conformal prediction
performs statistical assessment based on training data to perform
predictions. It quantifies the conformity between the testing data
and a calibration set to determine a set of class labels as the output.
Conformal prediction has been used for online learning [24], drug
development/recovery [7], and image classification [3]. RISE [32]
first applies conformal prediction on wireless sensing to detect data
that is likely to be misclassified. Incremental learning with extra
labeling is leveraged to improve the robustness of sensing systems.
Compared to RISE, our cross-domain conformal prediction frame-
work explores the relationships across training domains to quantify
the conformity of testing CSI data. It relieves our framework of the
i.i.d. assumption and thus enables applying conformal prediction
in an unseen domain without any extra labeling efforts.

8 CONCLUSION
This work aims to understand the domain variation problem in
WiFi sensing and develop a low-effort WiFi sensing framework
that meets the sensing reality requirements of deployment in vari-
ous real-world scenarios. Towards this end, we comprehensively
investigate the impact of six typical domain variations (i.e., environ-
ments, settings, users, users’ facing directions, users’ positions, and
timelines) in the three critical WiFi sensing applications (i.e., user
identification, activity recognition, and gesture recognition). We
propose a holistic WiFi sensing framework based on conformal pre-
diction that can ensure robust cross-domain sensing performance
without extra effort for data collection, feature modification, or
model retraining/adaptation. The unique cross-domain conformal
prediction scheme leverages multivariate kernel density estimation
and nonconformity measurement functions derived from a few
training domains to effectively assess the conformity of the testing
WiFi data even if the data is from an unseen domain. We further
design two fusion approaches to combine the nonconformity scores
derived from the training domains to quantify the degree of con-
formity, with priorities on maximizing the prediction accuracy and
minimizing the number of classes. Extensive experiments show that
our framework has great performance of the three WiFi sensing
applications across the six categories of domain variations.
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